Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia.

نویسندگان

  • H Kawaguchi
  • N Manabe
  • C Miyaura
  • H Chikuda
  • K Nakamura
  • M Kuro-o
چکیده

We recently identified a new gene, klotho, which is involved in the suppression of multiple aging phenotypes. The mouse homozygous for a disruption of the klotho locus (kl/kl) exhibited multiple pathological conditions resembling human aging. Histomorphometric analysis revealed low-turnover osteopenia in kl/kl mice. The decrease in bone formation exceeded that of bone resorption, resulting in a net bone loss. The number of osteoblast progenitors determined by ex vivo bone marrow cultures was reduced in kl/kl mice. In addition, cultured osteoblastic cells derived from kl/kl mice showed lower alkaline phosphatase activity and matrix nodule formation than those from wild-type mice. Osteoclastogenesis in the coculture of marrow cells and osteoblastic cells was decreased only when marrow cells originated from kl/kl mice independently of the origin of osteoblastic cells. We also found that the expression of osteoprotegerin, an osteoclastogenesis inhibitor, was significantly upregulated in kl/kl mice. We conclude that a defect in the klotho gene expression causes the independent impairment of both osteoblast and osteoclast differentiation, leading to low-turnover osteopenia. Because this state represents a characteristic feature of senile osteoporosis in humans, kl/kl mice can be regarded as a useful model for investigating cellular and molecular mechanisms of age-related bone loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects

Because JunB is an essential gene for placentation, it was conditionally deleted in the embryo proper. JunBDelta/Delta mice are born viable, but develop severe low turnover osteopenia caused by apparent cell-autonomous osteoblast and osteoclast defects before a chronic myeloid leukemia-like disease. Although JunB was reported to be a negative regulator of cell proliferation, junBDelta/Delta ost...

متن کامل

Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover.

Insulin receptor substrates (IRS-1 and -2) are essential for intracellular signaling by insulin and IGF-I, anabolic regulators of bone metabolism. Mice lacking the IRS-1 gene IRS-1(-/-) showed severe osteopenia with low bone turnover. IRS-1 was expressed in osteoblasts, but not in osteoclasts, of wild-type (WT) mice. IRS-1(-/-) osteoblasts treated with insulin or IGF-I failed to induce tyrosine...

متن کامل

Hypoxia-reperfusion affects osteogenic lineage and promotes sickle cell bone disease.

Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder, characterized by severe organ complication. Sickle bone disease (SBD) affects a large part of the SCD patient population, and its pathogenesis has been only partially investigated. Here, we studied bone homeostasis in a humanized mouse model for SCD. Under normoxia, SCD mice display bone loss and bone impairment,...

متن کامل

Disruption of c-Kit Signaling in KitW-sh/W-sh Growing Mice Increases Bone Turnover

c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-Kit(W/W-v) mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-Kit(W-sh)/(W-sh) (W(sh)/W(sh)) mice, which carry an inversion muta...

متن کامل

Estrogen Deficiency Induces the Differentiation of IL-17 Secreting Th17 Cells: A New Candidate in the Pathogenesis of Osteoporosis

Th17 cells produce IL-17, and the latter promotes bone loss in collagen-induced arthritis in mice. Blocking IL-17 action in mouse model of rheumatoid arthritis reduces disease symptoms. These observations suggest that Th17 cells may be involved in the pathogenesis of bone loss. However, the role of Th17 cell in estrogen (E2) deficiency-induced bone loss is still not very clear. We investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 1999